

Supporting Information

© Wiley-VCH 2010

69451 Weinheim, Germany

Elementary Steps in Gold Catalysis: The Significance of *gem*-Diauration**

Günter Seidel, Christian W. Lehmann, and Alois Fürstner*

anie_201003349_sm_miscellaneous_information.pdf

General: All reactions were carried out under Ar in flame-dried glassware. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF, (Mg/anthracene), CH₂Cl₂ (CaH₂), pentane, hexane, toluene (Na/K), *i*PrOH (Mg). Flash chromatography: Merck silica gel 60 (230–400 mesh). NMR: Spectra were recorded on Bruker DPX 300, AMX 300, and AV 400 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (*J*) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CD₂Cl₂: $\delta_C \equiv 53.8$ ppm; residual CHDCl₂: $\delta_H \equiv 5.32$ ppm). MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker). All commercially available compounds (Fluka, Lancaster, Aldrich) were used as received.

Starting Materials.

Pinacol boronate **9** was used as received from the commercial supplier. The other starting materials were prepared according to literature procedures and showed the following spectral data:

Boronate 6:^{1 1}H NMR (400 MHz, CD₂Cl₂): δ = 7.20 - 7.18 (m, 2 H), 7.10 (q, *J* = 1.5 Hz, 1 H), 7.05 - 7.03 (m, 2 H), 4.05 (q, *J* = 7.2 Hz, 2 H), 1.80 (d, *J* = 1.5 Hz, 3 H), 1.32 ppm (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (75 MHz, CD₂Cl₂, -60 °C): δ = 159.4 (BC=<u>C</u>), 148.0, 122.1, 111.7, 96.5 (B<u>C</u>=C), 69.1, 15.3, 9.4 ppm.

Boronic acid 13:^{2 1}H NMR (400 MHz, CD₂Cl₂): δ = 6.80 (br s, OH), 2.33 (s, 3 H), 1.68 ppm (s, 6 H); ¹³C NMR (75 MHz, CD₂Cl₂, -60 °C): δ = 180.8, 167.8, 105.5, 92.5 (B<u>C</u>), 24.5, 20.5 ppm.

Boronate 15:^{1 1}H NMR (400 MHz, CDCl₃): δ = 7.33 (s, 1 H), 7.20 – 7.18 (m, 2 H), 7.05 – 7.03 (m, 2 H), 2.43 (s, 3 H), 2.39 (t, 2 H), 1.52 (m, 2 H), 1.39 (m, 2 H), 0.94 ppm (t, 3 H); ¹³C

¹ a) M. Satoh, N. Miyaura, A. Suzuki, *Synthesis* **1987**, 373-377; b) I. D. Gridnev, N. Miyaura, A. Suzuki, *Organometallics* **1993**, *12*, 589-592.

² X. Wang, X. Sun, L. Zhang, Y. Xu, D. Krishnamurthy, C. H. Senanayake, Org. Lett. 2006, 8, 305-307.

NMR (75 MHz,-60 °C, CD₂Cl₂): *δ* = 148.4 (BC=<u>C</u>H), 147.9, 125.5 (B<u>C</u>=C), 122.3, 112.0, 30.7, 30.3, 22.8, 16.9, 14.0 ppm.

Aurations.

Compound 14: A mixture containing boronic acid **13** (100 mg, 0.54 mmol), (Ph₃P)AuBr (291 mg, 0.54 mmol) and Cs₂CO₃ (176 mg, 0.54 mmol) in isopropanol (5 mL) was stirred at 50 °C for 2 h. For work up, the solvent was distilled off under reduced pressure (10^{-3} mbar), the residue was suspended in CH₂Cl₂ (5 mL), the remaining insoluble materials were filtered off through a short pad of Celite, and the filtrate was evaporated to give complex **14** as a colorless solid (278 mg, 86 %). ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.63 – 7.45 (m, 15 H), 2.13 (d, ⁵*J*_{PC} = 0.8 Hz, 3 H), 1.62 ppm (s, 6 H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 169.9 (d, ³*J*_{PC} = 5 Hz), 167.5 (d, ³*J*_{PC} = 2.4 Hz), 134.6 (d, ²*J*_{PC} = 14 Hz), 131.7 (d, ⁴*J*_{PC} = 1.9 Hz), 131.1 (d, *J*_{PC} = 52 Hz), 130.1 (d, ²*J*_{PC} = 117 Hz), 104.1, 25.4, 24.0 ppm; ³¹P NMR (162 MHz, CD₂Cl₂): δ = 44.4 ppm.

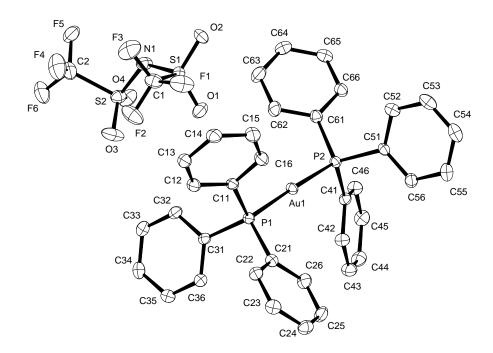
Complex 8: [(Ph₃P)AuNTf₂] (828 mg, 1.12 mmol) was added to a solution of compound **6** (114 mg, 0.56 mmol) and Cs₂CO₃ (182 mg, 0.56 mmol) in THF (5 mL) and the resulting mixture was stirred at ambient temperature for 1 h. At this point, inspection of the reaction mixture by ³¹P NMR showed the formation of a major product ($\delta_P = 37.1$ ppm, ca. 90 %), together with small amounts of unreacted [(Ph₃P)AuNTf₂] ($\delta_P = 31.0$ ppm, ca. 7 %) and [(Ph₃P)₂Au][NTf₂] ($\delta_P = 45.3$ ppm, ca. 3 %). For work up, all volatile materials were distilled off under vacuum (15 mbar) and the residue was passed through a short silica gel column (ca. 10 cm, \emptyset 2 cm), eluting with CH₂Cl₂ (200 mL). The combined product-containing fractions were evaporated and the residue dried in vacuo to give complex **8** as a colorless oil (383 mg), which contained trace impurities of [(Ph₃P)₂Au][NTf₂] and (Ph₃P)AuCl (likely formed by activation of CH₂Cl₂ during the work up, $\delta_P = 33.8$ ppm). Crystals of **8** suitable for X-ray structure analysis were grown by slowly cooling a solution of the complex in CH₂Cl₂, layered

with cold pentane, to $-78 \,^{\circ}$ C. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.70 - 7.33$ (m, 30-35H),³ 7.30 (s, 1 H), 4.34 (q, $J = 7.1 \,\text{Hz}$, 2 H), 2.09 (q, $J = 1.5 \,\text{Hz}$, 3 H), 1.43 ppm (t, $J = 7.1 \,\text{Hz}$, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 174.8$ (t, ³ $J_{PC} = 2.4 \,\text{Hz}$), 134.4 (d, ² $J_{PC} = 13.8 \,\text{Hz}$), 132.5 (d, ⁴ $J_{PC} = 2.6 \,\text{Hz}$), 129.8 (d, ³ $J_{PC} = 11.5 \,\text{Hz}$), 129.3 (d, $J_{PC} = 56.7 \,\text{Hz}$), 120.4 (q, $J_{CF} = 322 \,\text{Hz}$), 116.6 (t, $J_{PC} = 60.6 \,\text{Hz}$), 71.8, 20.3, 15.4 ppm; ³¹P NMR (162 MHz, CD₂Cl₂): $\delta = 37.5 \,\text{ppm}$; MS (ESI): $m/z \, 1003 \, (M^+ - \text{NTf}_2)$; 721 [(Ph₃P)₂Au⁺]; 280 (NTf₂⁻); HRMS (ESI): m/z: calcd for C₄₁H₃₉Au₂OP₂ [M^+]: 1003.1801, found: 1003.1792.

Compound 10: [(Ph₃P)AuNTf₂] (665 mg, 0.90 mmol) was added at -78 °C to a mixture containing pinacol boronate 9 (88 mg, 0.45 mmol) and Cs₂CO₃ (147 mg, 0.45 mmol) in THF (4 mL). The resulting mixture was allowed to reach ambient temperature. After stirring for 1 h, the solvent was distilled off under vacuum from the resulting red suspension, and the residue was rapidly passed through a silica gel column (6 cm, $\emptyset = 2.5$ cm), eluting with CH₂Cl₂ (80 mL). Evaporation of the product containing fractions afforded complex 10 as a colorless solid, which contained trace impurities of $[(Ph_3P)_2Au][NTf_2]$ ($\delta_P = 45.1$ ppm) and (Ph₃P)AuCl (likely formed by activation of CH₂Cl₂ during the work up, $\delta_P = 33.2$ ppm) (414 mg, ca. 72 %). Crystals suitable for X-ray diffraction were grown by slowly cooling a solution of the complex in THF/pentane to -20 °C. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.7 - 7.2$ (m, 30H), $^{3} 6.92$ (dd, J = 18.3, 8.7 Hz, 1 H), 6.24 (d, J = 18.3 Hz, 1 H), 2.06 - 1.93 (m, 1 H), 1.33 – 1.20 (m, 2 H), 1.04 – 0.92 ppm (m, 2 H); ¹³C NMR (100 MHz, CD₂Cl₂, characteristic signals): $\delta = 192.2, 132.2$ (d), 131.4, 128.7 (d), ca. 128.5 (C₁ according to HSQC; the signal is hidden by the signals of the Ph rings), 4 128.0 (d, J = 58.5 Hz), 119.2 (q, $J_{CF} = 320$ Hz), 21.7, 13.1 ppm; ³¹P NMR (162 MHz, CD₂Cl₂): δ = 37.0 ppm; MS (ESI): m/z 985 (M^+ – NTf₂), 721 [(PPh₃)₂Au]; HRMS (ESI): m/z: calcd for C₄₁H₃₇Au₂P₂ [M^+ – NTf₂]: 985.1696, found: 985.1701.

³ Because of the mentioned trace impurities, the integral for the aromatic protons is variable and slightly higher than expected.

⁴ In the ¹³C NMR spectrum recorded at -80 °C, the corresponding signal was detected at 128.4 ppm (t, $J_{PC} = 57.8$ Hz).


Compound 11: An NMR sample of complex **10** in CD₂Cl₂ was kept overnight at ambient temperature, causing the formation of a black precipitate. NMR inspection showed the presence of compound **11** as the only detectable organic product, which had formed in ca. 90 % yield. The ³¹P NMR showed the formation of $[(Ph_3P)_2Au][NTf_2]$ ($\delta_P = 45.1$ ppm, ca. 90 %) and residual **10** ($\delta_P = 37.0$ ppm, ca. 10 %). Characteristic data of compound **11**: ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 6.05$ (m, 2 H), 5.09 (m, 2 H), 1.37 (m, 2 H), 0.72 (m, 4 H), 0.37 ppm (m, 4 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 134.3$, 127.0, 14.1, 7.3 ppm; GC/MS: m/z: 134 (M^+ , 30), 119 (21), 117 (9), 115 (5), 105 (29), 91 (100), 79 (38), 77 (48), 65 (19), 51 (14).

Compound 12: A mixture containing pinacol boronate 9 (85 mg, 0.44 mmol), (Ph₃P)AuBr (237 mg, 0.44 mmol) and Cs₂CO₃ (143 mg, 0.44 mmol) in isopropanol (3 mL) was stirred at 50 °C for 2 h. For work up, the solvent was distilled off under reduced pressure (10^{-3} mbar), the residue was suspended in CH₂Cl₂ (3 mL), the remaining insoluble materials were filtered off through a short pad of Celite, and the filtrate was evaporated to give complex 12 as an amorphous solid (177 mg, 76%). When kept in CD₂Cl₂ solution, the material undergoes isomerization, leading to a Z:E = 29:71 mixture. Characteristic data of E-12: ¹H NMR (400) MHz, CD_2Cl_2): $\delta = 7.60 - 7.40$ (m, 15 H), 6.70 (d, J = 18.6 Hz, 1 H), 5.35 (dd, J = 18.5, 8.2 Hz, 1 H), 1.42 (m, 1 H), 0.67 – 0.60 (m, 2 H), 0.37 – 0.30 ppm (m, 2 H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 155.6, 150.8, 134.6, (d, J_{PC} = 13.8 Hz), 131.54 (d, J_{PC} = 2 Hz), 131.50 (d, J_{PC} = 49 Hz), 129.4 (d, J_{PC} = 10.7 Hz), 18.5, 7.0 ppm; ³¹P NMR (162 MHz, CD₂Cl₂): δ = 44.4 ppm; Characteristic data of Z-12: ¹H NMR (400 MHz, CD_2Cl_2): $\delta = 7.6 - 7.4$ (m, 15 H), 6.55 (d, J = 11.9 Hz, 1 H), 6.02 (dd, J = 11.9, 3 Hz, 1 H), 1.82 - 1.71 (m, 1 H), 0.75 - 0.68 (m, 2 H), 0.46 - 0.40 ppm (m, 2 H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 155.3$, 149.1, 134.6, (J_{PC} = 13.8) Hz), 131.54 ($J_{PC} = 2$ Hz), 131.50 ($J_{PC} = 49$ Hz), 129.4 ($J_{PC} = 10.7$ Hz), 19.1, 7.5 ppm; ³¹P NMR (162 MHz, CD_2Cl_2): $\delta = 44.4$ ppm.

Compound 16: (Ph₃P)AuCl (371 mg, 0.75 mmol) was added to a suspension of catechol boronate **15** (186 mg, 0.75 mmol) and Cs₂CO₃ (244 mg, 0.75 mmol) in isopropanol (6 mL)

and the resulting mixture was stirred at 50 °C for 1 h. The solvent was evaporated in vacuum (10^{-3} mbar) and the residue suspended in CH₂Cl₂ (5 mL). Insoluble materials were filtered off through a short pad of Celite and the filtrate was evaporated to give product **16** as a yellow syrup (345 mg, ca. 60 % of **16**). Residual (Ph₃P)AuCl (δ_P = 34.3 ppm) was removed by layering a solution of the crude product in the minimum amount of CH₂Cl₂ with pentane. ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.60 – 7.40 (15-21 H),³ 5.77 (t, *J* = 1.6 Hz, 1 H), 2.48 (dt, *J* = 7.4, 1.6 Hz, 2 H), 2.26 (s, 3 H), 1.67 (quint, *J* = 7.7 Hz, 2 H), 1.46 (sext., *J* = 7.6 Hz, 2 H), 0.93 ppm (t, *J* = 7.3 Hz, 3 H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 177.6, 134.5 (d, *J*_{PC} = 13.7 Hz), 131.8 (d, *J*_{PC} = 1.7 Hz), 131.5 (d, *J*_{PC} = 48 Hz), 129.4 (d, *J*_{PC} = 11 Hz), 129.4, 38.7, 34.9, 23.2, 17.3, 14.5 ppm; ³¹P NMR (162 MHz, CD₂Cl₂): δ = 42.6 ppm.

Crystallographic Information

Figure S-1. Structure of [(Ph₃P)₂Au][NTf₂] in the solid state. The anisotropic displacement parameters are drawn at the 50 % probability level; hydrogen atoms are omitted for clarity.

X-ray crystal structure analysis of the *gem*-digold complex 8: C₄₇H₄₆Au₂F₆NO_{5.75} P₂ S₂, $M_r = 1350.84 \text{ g}\cdot\text{mol}^{-1}$, orange plate, crystal size 0.032 x 0.023 x 0.014 mm, orthorhombic, space group $P2_12_12_1$, a = 13.3293(19) Å, b = 17.012(3) Å, c = 21.382(3) Å, V = 4848.7(12)Å³, T = 100 K, Z = 4, $D_{calc} = 1.850 \text{ g}\cdot\text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 6.267 \text{ mm}^{-1}$, Gaussian absorption correction (T_{min} = 0.82, T_{max} = 0.92), Nonius KappaCCD diffractometer, 1.53 < θ < 27.50°, 109700 measured reflections, 11130 independent reflections, 10476 reflections with I> $2\sigma(I)$, Structure solved by direct methods and refined to $R_I = 0.068 [I > 2\sigma(I)]$, $wR_2 = 0.169$, absolute structure parameter = 0.059(16), 362 parameters, H atoms riding, S = 1.337, residual electron density 1.9/–4.7 Å⁻³. Data quality and severe disorder of the [NTf₂]⁻ anion permitted only isotropic refinement of all light atoms.

X-ray crystal structure analysis of the *gem*-digold complex 10: $C_{43}H_{37}Au_2F_6NO_4P_2S_2$, $M_r = 1265.73 \text{ g·mol}^{-1}$, colorless plate, crystal size 0.24 x 0.05 x 0.05 mm, monoclinic, space group $P2_1n$, a = -18.930(2) Å, b = 9.5511(7) Å, c = 24.231(3) Å, $\beta = 100.889(9)^\circ$, V = 4302.2(8) Å³, T = 100 K, Z = 4, $D_{calc} = 1.954$ g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 7.053$ mm⁻¹, Gaussian absorption correction (T_{min} = 0.36, T_{max} = 0.74), Nonius KappaCCD diffractometer, 2.61 < θ < 33.22°, 82522 measured reflections, 16479 independent reflections, 12033 reflections with $I > 2\sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^2 to $R_I = 0.050$ [$I > 2\sigma(I)$], $wR_2 = 0.121$, absolute structure parameter = 0.059(16), 536 parameters, H atoms riding, S = 1.036, residual electron density 1.9/-4.7 Å⁻³.

X-ray crystal structure analysis of complex 14: C₂₅H₂₄AuO₃P, $M_r = 600.38 \text{ g·mol}^{-1}$, colorless plate, crystal size 0.20 x 0.19 x 0.05 mm, triclinic, space group *P1*, *a* = 8.7693(6) Å, *b* = 8.8472(7) Å, *c* = 15.0475(11) Å, $\alpha = 76.534(2)^{\circ}$, $\beta = 75.610(4)^{\circ}$, $\gamma = 84.256(4)^{\circ}$, *V* = 1098.62(14) Å³, *T* = 100 K, *Z* = 2, *D_{calc}* = 1.815 g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 6.792$ mm⁻¹, Gaussian absorption correction (T_{min} = 0.31, T_{max} = 0.72), Nonius KappaCCD diffractometer, $3.02 < \theta < 33.26^{\circ}$, 24223 measured reflections, 8374 independent reflections, 7677 reflections with *I* > 2 $\sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against *F*² to *R_I* = 0.038 [*I* > 2 $\sigma(I)$], *wR*₂ = 0.098, 274 parameters, H atoms riding, *S* = 1.041, residual electron density 3.7/–4.9 e Å⁻³.

X-ray crystal structure analysis of [(**Ph**₃**P**)₂**Au**][**NTf**₂]: C₃₈H₃₀AuF₆NO₄P₂S₂, $M_r = 1001.66$ g·mol⁻¹, colorless plate, crystal size 0.26 x 0.18 x 0.09 mm, orthorhombic, space group *Pna2*₁, a = 16.7142(2) Å, b = 24.1511(3) Å, c = 9.22800(10) Å, V = 3725.03(8) Å³, T = 100 K, Z =4, $D_{calc} = 1.786$ g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 4.220$ mm⁻¹, Empirical absorption correction (T_{min} = 0.74, T_{max} = 0.99), Nonius KappaCCD diffractometer, 2.96 < θ < 33.21°, 66232 measured reflections, 14191 independent reflections, 12127 reflections with $I > 2\sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^2 to $R_I =$ 0.030 [$I > 2\sigma(I)$], $wR_2 = 0.066$, absolute structure parameter = 0.000(5), 488 parameters, H atoms riding, S = 1.047, residual electron density 2.4/–1.9 Å⁻³.

CCDC 777626 (8), 779085 (10), 777624 (14) and 777625 ([(Ph₃P)₂Au][NTf₂]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.uk/data_request/cif.